Buddha Institute Of Technology						STITUTE OF	
Department: Mechanical Engineering							
Academic Semester: July- Dec 2022						BIT	<u>-</u>
Semester: V	Semester: V Section: A Course Code: KME501			Course: Heat & Mass Transfer			
Course Instructor:	Contact H	ct Hours /week: 5 (4+1) # of credits: 0		# of credits: 04			
CIE Marks: 50 SEE Marks: 100)			Exam Hours	: 03

Prerequisites if	any:						
Code No	Course Name	Description	Semester				
NOT APPLICABLE							

Content delivery:

COURSE SYLLABUS:							
Module No	Contents of Module	Hrs	COs				
1	Thermodynamics and Heat Transfer. Modes of Heat Transfer: Conduction, convection and radiation. Effect of temperature on thermal conductivity of materials, Introduction to combined heat transfer mechanism, General differential heat conduction equation in the rectangular, cylindrical and spherical coordinate systems. Initial and boundary conditions, Simple and Composite Systems in rectangular, cylindrical and spherical coordinates with and without energy generation, Concept of thermal resistance, Analogy between heat and electricity flow, Thermal contact resistance and over all heat transfer coefficient; Critical radius of insulation.	18	CO1				
2	Heat transfer from extended surfaces, Fins of uniform cross-sectional area, Errors of measurement of temperature in thermometer wells, Transient heat conduction, Lumped capacitance method, Time constant, Unsteady state heat conduction in one dimension only, Heisler charts.	16	CO2				
3	Basic concepts, Hydrodynamic boundary layer, Thermal boundary layer, Approximate integral boundary layer analysis, Analogy between momentum and heat transfer in turbulent flow over a flat surface, Mixed boundary layer, Flow over a flat plate, Flow across a single cylinder and a sphere, Flow inside ducts, Thermal entrance region, Empirical heat transfer relations, Relation between fluid friction and heat transfer, Liquid metal heat transfer. Physical mechanism of natural convection; Buoyant force, Empirical heat transfer relations for natural convection over vertical planes and cylinders, horizontal plates and cylinders, and sphere, Combined free and forced convection.	14	CO3				
4	Basic radiation concepts, Radiation properties of surfaces, Black body radiation Planck's law, Wein's displacement law, Stefan Boltzmann law, Kirchoff's law, Gray body, Shape factor, Black-body radiation, Radiation exchange between diffuse non black bodies in an enclosure, Radiation shields, Radiation combined with conduction and convection; Absorption and emission in gaseous medium; Solar	9	CO4				

	radiation, Green house effect.		
5	Types of heat exchangers, Fouling factors; Overall heat transfer coefficient, Logarithmic mean temperature difference (LMTD) method, Effectiveness-NTU method, Compact heat exchangers, Introduction to condensation phenomena, Heat transfer relations for laminar film condensation on vertical surfaces and on outside & inside of a horizontal tube, Effect of non-condensable gases, Drop wise Condensation, Heat pipes, Boiling modes, pool boiling, Hysteresis in boiling curve, Forced convection boiling.	9	CO5

COURSE OUTCOMES: At the end of the Course, the Student will be able to:

KME501.1	understand the mode of heat transfer and governing equations concerned to conduction and one dimensional steady state heat flow
KME501.2	express the knowledge of design skills of heat exchangers
KME501.3	describe the real time applications of fluid medium heat transfer
KME501.4	illustrate the real time applications of radiation mode of heat transfer
KME501.5	analyse the heat exchanger and process of boiling, condensation and mass transfer

Mapping of CO v/s PO:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
KME501.1	3	-	-	-	-		-	-	-	-	-	-
KME501.2	3	-	-	-	-		-	-	-	-	-	-
KME501.3	2	-	-	-	-		-	-	-	-	-	-
KME501.4		-	2	-	-	2	-	-	-	-	-	-
KME501.5		-	-	3	-	1	-	-	-	-	-	-

Correlation levels: 1-Slight (Low) 2-Moderate (Medium) 3-Substantial (High)

Mapping of CO v/s PSO:

	PSO1	PSO2
KME501.1	1	-
KME501.2	1	-
KME501.3	1	-
KME501.4	1	-
KME501.5	1	-

Gap in the syllabus	NIL

Topics to be covered	Demographic survey – A case study
beyond syllabus	

Assessment Methodologies:

Sl. No.	Description	Type
1	Student Assignment	Direct
2	Internal assessment	Direct
3	University exam	Direct
4	Student feedback	Indirect
5	Alumni feedback	Indirect
6	Employers feedback	Indirect

LESSON PLAN

Lecture #	Module#	Topics	RBT	Course	Planned	Actual	Faculty	Remarks
			Levels	Outcome	Date	Date	Sign	
1.		Thermodynamics and Heat		Mapping				
1.		Transfer,			22/08/2022			
2.		Modes of Heat Transfer			23/08/2022			
		Conduction			23/08/2022			
3.		Convection, Radiation,			24/08/2022			
4.		Effect of temperature on						
		thermal conductivity of			25/08/2022			
		materials.						
5.		Tutorial			26/08/2022			
6.		Introduction to combined			29/08/2022			
		heat transfer mechanism.						
7.	1	General differential heat	L3	CO1	30/08/2022			
	-	conduction equation in the	20					
		rectangular coordinate						
		systems						
8.		General differential heat			31/08/2022			
		conduction equation in the						
		rectangular coordinate						
		systems			01/00/2022			
9.		General differential heat			01/09/2022			
		conduction equation in the						
		cylindrical coordinate						
10		systems			02/00/2022			
10.		Tutorial			02/09/2022			

11.		General differential heat conduction equation in the cylindrical coordinate			05/09/2022	
		systems				
12.		General differential heat			06/09/2022	
		conduction equation in the				
		spherical coordinate				
		systems.				
13.		General differential heat			07/09/2022	
		conduction equation in the				
		spherical coordinate				
		systems. Initial and				
		boundary conditions.				
14.		Simple and Composite			08/09/2022	
		Systems in rectangular,				
		cylindrical and spherical				
		coordinates with and without				
		energy generation.				
15.		Tutorial			09/09/2022	
16.		Concept of thermal			12/09/2022	
		resistance, Analogy between				
		heat and electricity flow.				
17.		Thermal contact resistance			13/09/2022	
		and over all heat transfer				
		coefficient;				
18.		Critical radius of insulation.			14/09/2022	
19.		Basic radiation concepts,			15/09/2022	
		Radiation properties of				
		surfaces.				
20.		Tutorial			16/09/2022	
21.		Black body radiation,			22/09/2022	
		Planck's law,				
22.		Wein's displacement law.			23/09/2022	
		Stefan Boltzmann law,				
23.		Kirchoff's law, Gray body.			24/09/2022	
24.		Shape factor, Black-body			26/09/2022	
	4	radiation.	L4	CO4	20/09/2022	
25.	7	Tutorial	LŦ	CO4	27/09/2022	
26.		Radiation exchange between			28/09/2022	
		diffuse non black bodies in				
		an enclosure.				
27.		Radiation shields, Radiation			29/09/2022	
		combined with conduction				
		and convection.				
28.		Absorption and emission in			30/09/2022	
		gaseous medium, Solar				
		Radiation, Green house				
		effect.			1	
29.		Types of heat exchangers,			03/10/2022	
30.		Tutorial			06/10/2022	
31.	_	Fouling factors. Overall heat			07/10/2022	
	5	transfer coefficient.	L4	CO5		
32.		Logarithmic mean			08/10/2022	
		temperature difference				
		(LMTD) method.				

33.		Effectiveness-NTU method.			10/10/2022	<u> </u>	
33.		Effectiveness-NTO method.			10/10/2022		
35.		Compact heat exchangers.			11/10/2022		
33.		Introduction to condensation			11/10/2022		
		phenomena,					
36.		Tutorial			12/10/2022		
37.		Heat transfer relations for			13/10/2022		
37.		laminar film condensation			13/10/2022		
		on vertical surfaces and on					
		outside & inside of a	L4	CO5			
		horizontal tube.					
38.		Effect of non-condensable			14/10/2022		
20.		gases, Dropwise			1 1/ 10/ 2022		
		Condensation. Heat pipes,					
39.	1	Boiling modes, pool boiling.			17/10/2022		
40.	1	Hysteresis in boiling curve,			18/10/2022		
		Forced convection boiling.					
41.		Tutorial			19/10/2022		
42.	1	Basic concepts,			20/10/2022		
		Hydrodynamic boundary					
		layer.					
43.	1	Thermal boundary layer,			21/10/2022		
		Approximate integral					
		boundary layer analysis.					
44.		Analogy between			31/10/2022		
		momentum and heat transfer					
		in turbulent flow over a flat	L4	CO3			
		surface.					
45.		Mixed boundary layer, Flow			01/11/2022		
		over a flat plate.					
46.		Tutorial			02/11/2022		
47.		Flow across a single			03/11/2022		
		cylinder, Flow across a					
		single sphere.					
48.		Empirical heat transfer			04/11/2022		
	3	relations, Relation between					
		fluid friction and heat					
40	-	transfer. Liquid metal heat transfer,			07/11/2022		
49.		Physical mechanism of			07/11/2022		
		natural convection;					
50.		Buoyant force. Empirical			08/11/2022		
30.		heat transfer relations for			00/11/2022		
		natural convection over					
		vertical planes and cylinders.					
51.		Tutorial			09/11/2022		
52.	1	Flow inside ducts, Thermal			10/11/2022		
		entrance region.					
53.	1	Empirical heat transfer			14/11/2022		
		relations for natural					
		convection over horizontal					
		plates and cylinders.					
54.	1	Empirical heat transfer			15/11/2022		
		relations for natural					
		convection over sphere.					
		•					<u> </u>

55.		Combined free and forced			16/11/2022	
		convection.				
56.		Tutorial			17/11/2022	
57.		Heat transfer from extended			18/11/2022	
		surfaces.				
58.]	Fins of uniform cross-			21/11/2022	
		sectional area.				
59.]	Fins of uniform cross-			22/11/2022	
		sectional area.				
60.		Errors of measurement of			23/11/2022	
		temperature in thermometer				
		wells.				
61.		Tutorial			24/11/2022	
62.		Transient heat conduction,			25/11/2022	
63.		Lumped capacitance			26/11/2022	
	2	method.	L6	CO2		
64.		Lumped capacitance			29/11/2022	
		method.				
65.		Time constant			30/11/2022	
66.		Tutorial			03/12/2022	
67.		Time constant,			05/12/2022	
68.		Unsteady state heat			06/12/2022	
		conduction in one dimension				
		only.				
69.		Unsteady state heat			07/12/2022	
		conduction in one dimension				
		only.				
70.		Heisler charts.			12/12/2022	
71.		Heisler charts.			13/12/2022	

*L1-Remembering; L2-Understanding; L3-Applying; L4-Analysing; L5-Evaluating; L6-Creating

Literature:

Reference 1	R1	Heat And Mass Transfer By Er. R.K. Rajput	11 th	S.Chand Company	2017(81-219-2617-3)
Reference 2	R2	A Textbook of Heat and Mass Transfer By R.C. Rchdeva	5 th	New age international limited publishers	2011(978-81-224- 2785-1)

Sample Questions:

Question No.	Questions
1.	What do you understand by overall heat transfer coefficient?
2.	Explain black body, white body, gray body and opaque body.
3.	How heat exchangers are classified?
4.	For a steady flow process from state 1 to state 2 enthalpy changes from 400 KJ/kg to 100 KJ/kg and entropy changes from 1.1 KJ/kg-k to 0.7 KJ/kg-k and the ambient temperature is 300 K. Find the change in availability.(GATE 2009)
5.	What do you understand by Inversion curve? Define Joule Thomson Co-efficient with diagram.
6.	A reversible engine is supplied 900 KJ of heat from a heat source at 500 K. The engine develops 300 KJ of net work and rejects heat to two heat sinks at 400 K and 300 K. Determine the engine thermal efficiency and magnitude of heat interaction with each of the sink.
7.	Determine the enthalpy, Specific Volume, internal energy and entropy of superheated steam at 15 bar pressure and 220 °C. Take specific heat of superheat equal to 2.2 KJ/Kg-K
8.	Three Carnot engines 1, 2 and 3 operate between temperature of 800 K and 500 K. Make calculations for the intermediate temperatures if the work produced by the engines are in the ratio of 5:3:1
9.	Discuss the coefficient of volume expansion, adiabatic and isothermal compressibility. Also find the loss in available energy due to given heat transfer. If 3 kg of gas ($c_V = 0.81 \text{ kJ/kg K}$) initially at 2.5 bar and 400 K receives 600 kJ of heat from an infinite source at 1200 K and the surrounding temperature is 290 K
10.	Derive Steady Flow Energy Equation (S.F.E.E.). Also write the steady flow energy equation for turbine, boiler and centrifugal pump
11.	Discuss the Clapeyron equation and also explain the Joule-Kelvin effect with help of inversion curve and inversion temperature.
12.	Determine the enthalpy, Specific Volume, internal energy and entropy of superheated steam at 25 bar pressure and 250 °C. Take specific heat of superheat equal to 2.12 KJ/Kg-K.
13.	Expain the concept of principle of entropy increase
14.	Steam at 1000 kPa and 300 ⁰ C enters an engine and expands to 20 kPa. If the exhaust steam has a dryness fraction of 0.9. make calculation for the drop in enthalpy and change in entropy
15.	A Single stage air turbine is to operate with an inlet pressure and temperature of 8 bar and 600K. The outlet pressure and temperature are 1 bar and 300K, the surroundings pressure and temperature is 1 bar and 200K. Mass flow rate is 5 kg/s, determine the decrease in availability, the maximum work and the Irreversibility. For air take $C_P = 1.005 \text{KJ/Kg-k}$ and $R = 0.287 \text{KJ/Kg-K}$
16.	A gas initially at 1.5 bar pressure, 0.15 m ³ volume and 300 K was compressed polytropically (pv ^{1.48} = constant) to 13 bar pressure. Determine the change in entropy. Also work out the approximate entropy change obtained by dividing the heat transferred by the mean absolute temperature during compression. Take C_p =1.04 KJ/Kg-K and C_v =0.745 KJ/Kg-K
17.	Define the various methods of refrigeration and application of the refrigeration.
18.	Explain the Rankine cycle with the help of neat sketch, P-V and T-S diagram. If 5 kg water at 45°C is heated at a constant pressure of 10 bar until it becomes superheated vapour at 300°C. Find the change in volume, enthalpy, internal energy and entropy.

19.	Explain the vapour compression refrigeration cycle and its C.O.P. with the help of T-S, P-H and
	flow diagram. Can this cycle be reversible?
20.	An air- water vapour mixture at 25 °C. and 1 bar has a relative humidity of 75 percent. Determine
	a) The partial pressure of water vapour and dry air. b) the specific volume of each constituent c)
	the dew point temperature, the specific humidity and the saturation ratio. d) the density of the
	mixture.

Assessment rubrics that is going to be adopted for direct attainment is depicted in below table

Level of Achievement	Elaboration on Course Grading Description	Bench Mark Set (Out of 100)
Excellent (A)	The Student's performance is outstanding in almost all the intended course learning outcomes	21 to 25
Good (B)	The student's performance is good in most of the intended course learning outcomes.	15 to 20
Marginal (C)	The student's performance is barely satisfactory. It marginally meets the intended course learning outcomes	12 to 14
Fail (F)	The Students performance is inadequate. Student fails to meet many of the intended course learning outcomes	Less than 12